Recent Posts

Archive

Tags

Denervation does not change the ratio of collagen I and collagen III mRNA in the extracellular matri

American Journal of Physiology - Regulatory Integrative and Comparative Physiology

Abstract

Denervation does not change the ratio of collagen I and collagen III mRNA in the extracellular matrix of muscle. Am J Physiol Regul Integr Comp Physiol 292: R983-R987, 2007. First published September 28, 2006; doi: 10.1152/ajpregu.00483.2006.-Denervation or inactivity is known to decrease the mass and alter the phenotype of muscle and the mechanics of tendon. It has been proposed that a shift in the collagen of the extracellular matrix (ECM) of the muscle, increasing type III and decreasing type I collagen, may be partially responsible for the observed changes. We directly investigated this hypothesis using quantitative real-time PCR on muscles and tendons that had been denervated for 5 wk. Five weeks of denervation resulted in a 2.91-fold increase in collagen concentration but no change in the content of collagen in the muscle, whereas in the tendon there was no change in either the concentration or content of collagen. The expression of collagen I, collagen III, and lysyl oxidase mRNA in the ECM of muscle decreased (76 +/- 1.6%, 73 +/- 2.3%, and 83 +/- 3.2%, respectively) after 5 wk of denervation. Staining with picrosirius red confirmed the earlier observation of a change in staining color from red to green. Taken with the observed equivalent decreases in collagen I and III mRNA, this suggests that there was a change in orientation of the ECM of muscle becoming more aligned with the axis of the muscle fibers and no change in collagen type. The change in collagen orientation may serve to protect the smaller muscle fibers from damage by increasing the stiffness of the ECM and may partly explain why the region of the tendon closest to the muscle becomes stiffer after inactivity.

Address

University of Colorado - Boulder

1111 Engineering Drive
UCB 427
Boulder, Colorado 80309-0427

Contact

Phone: 765 496-1768

© 2020 by MEML