Address

Martin Jischke Hall of Biomedical Engineering

206 S Martin Jischke Dr
West Lafayette, IN 47907, USA

Contact

Phone: 765 496-1768

Fax: 765 496-1459

© 2018 by MEML. Created with Wix.com

Incorporation of types I and III collagen in tunable hyaluronan hydrogels for vocal fold tissue engineering

Acta Biomaterialia
 
Abstract
 

Vocal fold scarring is the fibrotic manifestation of a variety of voice disorders, and is difficult to treat. Tissue engineering therapies provide a potential strategy to regenerate the native tissue microenvironment in order to restore vocal fold functionality. However, major challenges remain in capturing the complexity of the native tissue and sustaining regeneration. We hypothesized that hydrogels with tunable viscoelastic properties that present relevant biological cues to cells might be better suited as therapeutics. Herein, we characterized the response of human vocal fold fibroblasts to four different biomimetic hydrogels: thiolated hyaluronan (HA) crosslinked with poly(ethylene glycol) diacrylate (PEGDA), HA-PEGDA with type I collagen (HA-Col I), HA-PEGDA with type III collagen (HA-Col III) and HA-PEGDA with type I and III collagen (HA-Col I-Col III). Collagen incorporation allowed for interpenetrating fibrils of collagen within the non-fibrillar HA network, which increased the mechanical properties of the hydrogels. The addition of collagen fibrils also reduced hyaluronidase degradation of HA and hydrogel swelling ratio. Fibroblasts encapsulated in the HA-Col gels adopted a spindle shaped fibroblastic morphology by day 7 and exhibited extensive cytoskeletal networks by day 21, suggesting that the incorporation of collagen was essential for cell adhesion and spreading. Cells remained viable and synthesized new DNA throughout 21 days of culture. Gene expression levels significantly differed between the cells encapsulated in the different hydrogels. Relative fold changes in gene expression of MMP1, COL1A1, fibronectin and decorin suggest higher degrees of remodeling in HA-Col I-Col III gels in comparison to HA-Col I or HA-Col III hydrogels, suggesting that the former may better serve as a natural biomimetic hydrogel for tissue engineering applications.

 

 

 

 

 

 

 

Please reload

Recent Posts

Please reload

Archive

Please reload

Tags

Please reload