Recent Posts



Dynamics of non-canonical amino acid-labeled intra- and extracellular proteins in the developing mou

Cellular and Molecular Bioengineering - 2019 Young Innovator Issue


Mapping protein synthesis and turnover during development will provide insight into functional tissue assembly; however, quantitative in vivo characterization has been hindered by a lack of tools. To address this gap, we previously demonstrated murine embryos can be labeled with the non-canonical amino acid azidohomoalanine (Aha), which that enables the enrichment and identification of newly synthesized proteins. Using this technique, we now show how protein turnover varies as a function of both time and cellular compartment during murine development.


Pregnant C57BL/6 mice were injected with Aha or PBS (control) at different embryonic time points. Aha-labeled proteins from homogenized E12.5 and E15.5 embryos were conjugated with diazo biotin-alkyne, bound to NeutrAvidin beads, selectively released, then processed for either SDS-PAGE or LC-MS/MS. For turnover studies, embryos were harvested 0-48 h after Aha injection at E12.5, separated into different cellular fractions based on solubility, and analyzed via western blotting.


We developed an enhanced method for isolating Aha-labeled proteins from embryos that minimizes background signal from unlabeled proteins and avidin contamination. Approximately 50% of all identified proteins were found only in Aha samples. Comparing proteins present in both Aha and PBS samples, 90% were >2-fold enriched in Aha-treated embryos. Furthermore, this method could resolve differences in the Aha-labeled proteome between developmental time points. Newly synthesized Aha-labeled proteins were observed by 3 h and peak labeling was around 6 h. Notably, extracellular matrix and cytoskeletal turnover appeared lower than the cytosolic fraction.


The methods developed in this work enable the identification and quantification of protein synthesis and turnover in different tissue fractions during development. This will provide insight into functional tissue assembly and ultimately inform the design of regenerative therapies that seek to promote growth and repair.


University of Colorado - Boulder

1111 Engineering Drive
UCB 427
Boulder, Colorado 80309-0427


Phone: 765 496-1768

© 2020 by MEML